Suppression of centrosome amplification after DNA damage depends on p27 accumulation.

نویسندگان

  • Eiji Sugihara
  • Masayuki Kanai
  • Soichiro Saito
  • Takayuki Nitta
  • Hideo Toyoshima
  • Keiko Nakayama
  • Keiichi I Nakayama
  • Kenji Fukasawa
  • Manfred Schwab
  • Hideyuki Saya
  • Masanao Miwa
چکیده

The centrosome plays a fundamental role in cell division, cell polarity, and cell cycle progression. Centrosome duplication is mainly controlled by cyclin-dependent kinase 2 (CDK2)/cyclin E and cyclin A complexes, which are inhibited by the CDK inhibitors p21Cip1 and p27Kip1. It is thought that abnormal activation of CDK2 induces centrosome amplification that is frequently observed in a wide range of aggressive tumors. We previously reported that overexpression of the oncogene MYCN leads to centrosome amplification after DNA damage in neuroblastoma cells. We here show that centrosome amplification after gamma-irradiation was caused by suppression of p27 expression in MYCN-overexpressing cells. We further show that p27-/- and p27+/- mouse embryonic fibroblasts and p27-silenced human cells exhibited a significant increase in centrosome amplification after DNA damage. Moreover, abnormal mitotic cells with amplified centrosomes were frequently observed in p27-silenced cells. In response to DNA damage, the level of p27 gradually increased in normal cells independently of the ataxia telangiectasia mutated/p53 pathway, whereas Skp2, an F-box protein component of an SCF ubiquitin ligase complex that targets p27, was reduced. Additionally, p27 levels in MYCN-overexpressing cells were restored by treatment with Skp2 small interfering RNA, indicating that down-regulation of p27 by MYCN was due to high expression of Skp2. These results suggest that the accumulation of p27 after DNA damage is required for suppression of centrosome amplification, thereby preventing chromosomal instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM.

Centrosomes are the principal microtubule organising centres in somatic cells. Abnormal centrosome number is common in tumours and occurs after gamma-irradiation and in cells with mutations in DNA repair genes. To investigate how DNA damage causes centrosome amplification, we examined cells that conditionally lack the Rad51 recombinase and thereby incur high levels of spontaneous DNA damage. Ra...

متن کامل

Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway

We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for ...

متن کامل

A Centrosome-autonomous Signal That Involves Centriole Disengagement Permits Centrosome Duplication in G2 Phase after DNA Damage

DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amp...

متن کامل

Coordination of centrosome homeostasis and DNA repair is intact in MCF-7 and disrupted in MDA-MB 231 breast cancer cells.

When cells encounter substantial DNA damage, critical cell cycle events are halted while DNA repair mechanisms are activated to restore genome integrity. Genomic integrity also depends on proper assembly and function of the bipolar mitotic spindle, which is required for equal chromosome segregation. Failure to execute either of these processes leads to genomic instability, aging, and cancer. He...

متن کامل

MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.

The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 66 8  شماره 

صفحات  -

تاریخ انتشار 2006